This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis* 

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



### Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

# TRANSFORMATIONS OF O,O-DIETHYL-PHOSPHOROTHIO CHLORIDATE UNDER PHASE TRANSFER CONDITIONS

Imre Petneházy<sup>a</sup>; Gyöngyi Szakál<sup>a</sup>; László Töke<sup>a</sup>; László Vida<sup>b</sup>

<sup>a</sup> Organic Chemical Technology Department, Polytechnical University of Budapest, Müegyetem, Hungary <sup>b</sup> Chemical Technology Department, Polytechnical University of Budapest,

To cite this Article Petneházy, Imre , Szakál, Gyöngyi , Töke, László and Vida, László (1981) 'TRANSFORMATIONS OF O,O-DIETHYL-PHOSPHOROTHIO CHLORIDATE UNDER PHASE TRANSFER CONDITIONS', Phosphorus, Sulfur, and Silicon and the Related Elements, 9:3,267-268

To link to this Article: DOI: 10.1080/03086648108078248 URL: http://dx.doi.org/10.1080/03086648108078248

#### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## TRANSFORMATIONS OF O,O-DIETHYL-PHOSPHOROTHIO-CHLORIDATE UNDER PHASE TRANSFER CONDITIONS

IMRE PETNEHÁZY, GYÖNGYI SZAKÁL, and LÁSZLÓ TŐKE†

Organic Chemical Technology Department, Polytechnical University of Budapest, Müegyetem, H-1521, Hungary.

and

#### LÁSZLÓ VIDA

Chemical Technology Department, Polytechnical University of Budapest.

(Received January 18, 1980; in final form March 3, 1980)

O,O-Diethyl-phosphorothiochloridate reacts under phase transfer conditions to give a trithiono-triphosphate derivative. The formation and the structure of that compound have been established.

Among the pesticides are a number of compounds which contain the diethyl-thionophosphoryl moiety. Introduction of such a group into the molecule is an important process and usually goes by acylation of the conjugate base of the weak NH, —OH, —SH acids with O,O-diethyl-phosphorothiocloridate.<sup>1</sup>

Using the phase transfer catalytic effect of quaternary ammonium salts, polyamines, crownethers and podands in solid-liquid or sometimes in liquid-liquid phase transfer conditions<sup>2</sup> we succeeded in acylating these types of functions in the presence of an alkali hydroxide as base (for the typical reaction and working up procedure see the Experimental Part). A small amount of pyridine or triethylamine is also added as cocatalyst<sup>3</sup> to the mixture if quaternary salts or crown-ethers are used in the reactions.

In the reactions which we have carried out, at least one [liquid-liquid PT conditions] or two [in solid-liquid PT conditions] by-products common for each reaction can be detected by GLC or TLC. They have been separated from the reaction mixture by preparative TLC or column chromatography. The one formed in liquid-liquid phase

transfer conditions as a sole by-product (I) gives a lower  $R_f$  value (0.23 Kieselgel G, benzene-CHCl<sub>3</sub> = 1:1) and at GLC conditions it is more volatile than the other (II).

On the basis of the MS, <sup>1</sup>H-NMR, IR data and comparison with an authentic sample<sup>4</sup> product *I* is tetraethyl-dithionopyrophosphate.

By-product II (R<sub>f</sub>: 0.52 under the conditions given above) can also be prepared in a relatively clean form simply by stirring the heterogeneous mixture of solid KOH, diethyl-phosphorothio-chloridate and tetramethyl-ethylenediamine (TEMED) in dichloromethane at ambient temperature. <sup>1</sup>H-NMR and IR spectra of II are almost identical with those of I, but the molecular peak and the fragmentation pattern in the mass spectrum give decisive evidences that this compound has structure II.

In Scheme I we give a rational route to explain the formation of the compounds I and II.

The solid-liquid phase transfer conditions seem to be optimum for the formation of the anion intermediate III (by cleavage of I with a strong nucleophile) and for the further acylation of III by diethyl-phosphorothiochloridate. In liquid-liquid phase transfer conditions the anion III is extracted into the aqueous phase, so the formation of compound II is less probable.

<sup>†</sup> To whom correspondence should be addressed.

268 L. TŐKE et al.

#### Scheme I

#### **EXPERIMENTAL**

To the solution of suspension of 0.1 mol substrate to be acylated, 0.11 mol diethyl-phosphorothiochloridate, 0.01 mol catalyst (TEMED, dibenzo-18-crown-6 or TEBAC) in dichloromethane (or acetonitrile) and 0.5 mol powdered potassium hydroxide and 0.5 mol potassium carbonate are added and the mixture is stirred at room temperature till the reaction is completed.

The suspension is filtered with suction and compounds I and II are separated from the filtrate by column chromatography (Kieselgel 40, 70-230 mesh, eluated with benzene-chloroform mixture 5:4) or by preparative TLC (Kieselgel G type 60, benzene-chloroform mixture 1:1).

Yields calculated for I, based on diethyl-phosphorothio-chloridate, are 1-5%, and 10-30% for II (e.g. in case of N-acylation of phthalimide 3% I and 20% II are formed in addition to 70% diethyl-thionophosphoryl-phthalimide). If the substrate is left out from the mixture the yield of compound II can be as high as 60%.

Both I and II are liquids. Bp. for I 93-5°C at 13 Torr;

IR (KBr) (Instrument: Perkin Elmer 237) v: 2950, 2900, 1020, 960, 795 cm $^{-1}$ .

<sup>1</sup>*H-NMR* (60 MHz, TMS CCl<sub>4</sub>) (Instrument: Perkin Elmer R 12)  $\delta$ : 1.34 (t, J = 7 Hz; 12 H) 3.77–4.46 (m, 8 H) [ppm].

MS (70 eV, Instrument: Finniger 3200) m/e: 321 (6%) M<sup>+</sup>; 228 (11%); 212 (9%); 170 (55%); 125 (45%); 109 (47%); 97 (100%); 92 (99%); 81 (88%); 65 (91%).

Compound II decomposes during distillation. Anal. Found: C, 26.72; H, 10.28. Calc for  $C_{10}H_{25}O_7P_3S_3$ : C, 26.90; H, 5.64.

IR v: 2960, 2910, 1020, 965, 840 cm<sup>-1</sup>.

<sup>1</sup>*H-NMR*  $\delta$ : 1.37 (t, J = 7 Hz; 15 H) 3.95 - 4.72 (m, 10 H) [ppm].

*MS* m/e: 446 (24%) M<sup>+</sup>; 322 (21%); 294 (19%); 277 (11%); 266 (25%); 249 (13%); 245 (100%); 238 (29%); 221 (14%); 217 (54%); 209 (27%); 202 (40%); 192 (26%); 189 (15%); 97 (25%).

#### REFERENCES

- C. Fest and K.-J. Schmidt, The Chemistry of Organophosphorus Pesticides (Springer-Verlag, Berlin-Heidelberg-New York, 1973).
- Compendium of Phase-Transfer Reactions and Related Synthetic Methods (Ed. W. E. Keller, Fluka A. G., Buchs, Switzerland, 1979).
- R. W. Ridgeway, H. W. Greenside, and H. H. Freedman, J. Am. Chem. Soc., 98, 1979 (1976).
- a) G. Schrader, Angew. Chem., 70, 690 (1958). b) A. D. F. Toy, J. Am. Chem. Soc., 73, 4670 (1951) and references cited therein.